

Let's imagine that we have a media portal!

Articles Section Quizzes Section Portal Special Projects & User Content Games Section Section

Each section has its own development team, core audience and engagement metrics

Portal:

- Website-level Metrics 1
- Website-level

Metrics 2

- Website-level Metrics 3

Articles Section

- Metrics 1
- Metrics 2
- Metrics 3

Quizzes Section

- Metrics 1
- Metrics 2
- Metrics 3

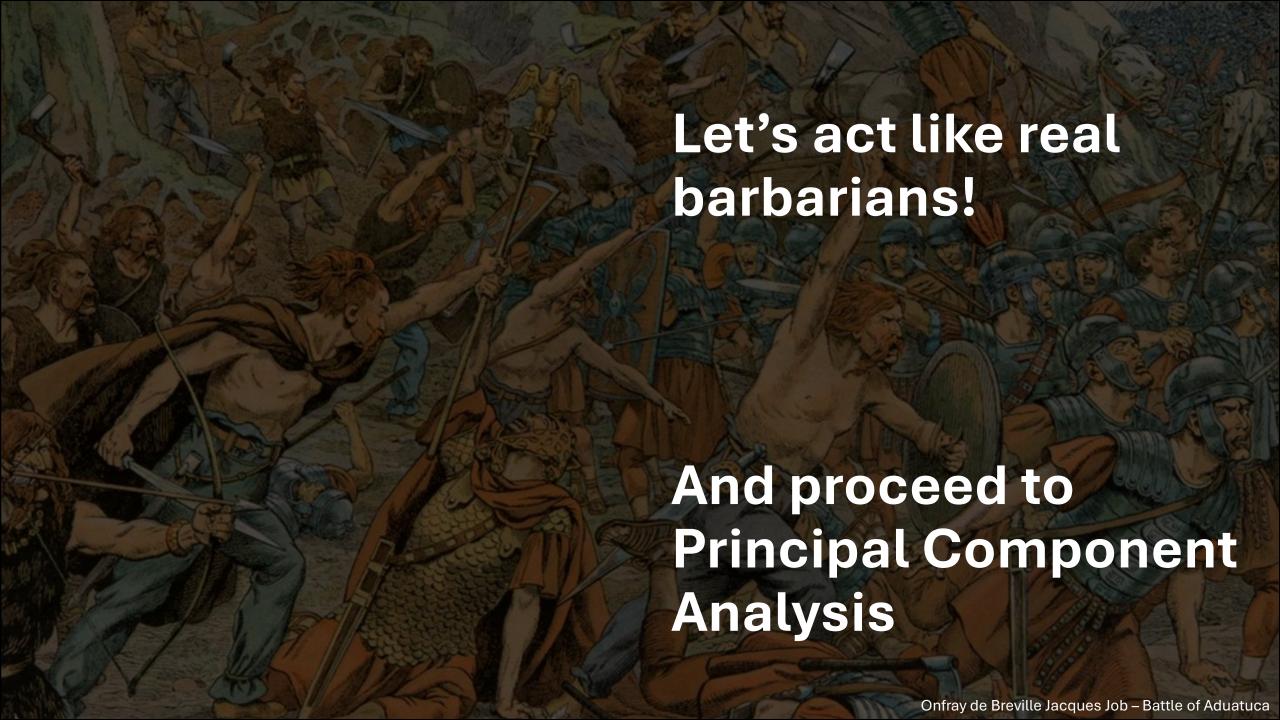
User Content Section

- Metrics 1
- Metrics 2
- Metrics 3

Special Projects & Games

Section

- Metrics 1
- Metrics 2
- Metrics 3



Let's use basic GA4driven engagement metrics Let's rely on website-level metrics

Let's rely on section-specific metrics

Sometimes it is too generic/nonindicative It cannot say how separate sections perform

It doesn't show a full picture

Principal Component Analysis is (almost) your personal data archiver

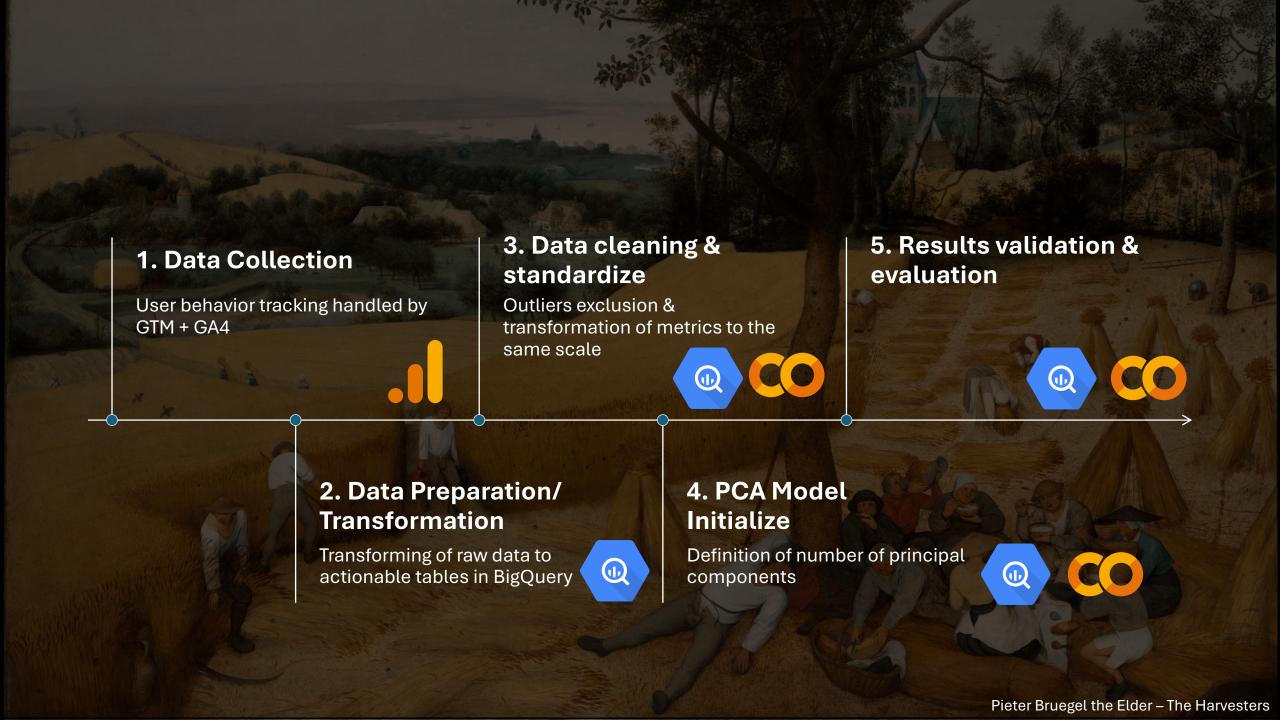
user_id	metrics1	metrics2	metrics3	•••	metrics100
0	100	27	45	•••	50
1	86	17	45	•••	4
2	94	21	40	•••	56
3	83	29	44	•••	62
4	87	18	43	•••	48
5	82	11	47	•••	7
6	97	23	47	•••	61

user_id	pc1	pc2		
0	-0.13	-1.14		
1	-0.55	0.03		
2	-0.15	-1.22		
3	1.66	-0.29		
4	0.74	-0.68		
5	-0.64	1.32		
6	0.51	0.12		

- PCA transforms selected metrics to abstract dimensions/indexes
- In terms of digital analytics, principal components can be used in:
 - metrics patterns reveal
 - user segmentation
 - building of abstract-level metrics

We already can do it!

- BigQuery ML
- Google Colab (pandas/numpy + scikit learn)
- R
- IBM SPSS
- A lot of other variants!



Data Preparation

Making of sessionbased or user-based tables with engagement metrics as columns

Limitations:

- It is applicable only for numerical or ordinal variables
- It is not so effective in nonlinear cases – in that case better use kPCA or other DR methods

```
CREATE OR REPLACE TABLE `project.dataset.session_features` AS
✓WITH agg AS (
  SELECT
    session_id,
    SUM(CASE WHEN event_name = 'metrics1'
                                               THEN 1 ELSE 0 END) AS metrics1,
    SUM(CASE WHEN event_name = 'metrics2'
                                               THEN 1 ELSE 0 END) AS metrics2,
    SUM(CASE WHEN event_name = 'metrics3'
                                               THEN 1 ELSE 0 END) AS metrics3,
    SUM(CASE WHEN event_name = 'metrics4'
                                               THEN 1 ELSE 0 END) AS metrics4,
    SUM(CASE WHEN event_name = 'metrics5'
                                               THEN 1 ELSE 0 END) AS metrics5,
    SUM(CASE WHEN event_name = 'metrics6'
                                               THEN 1 ELSE 0 END) AS metrics6,
  FROM base
  GROUP BY session_id
SELECT * FROM agg;
```

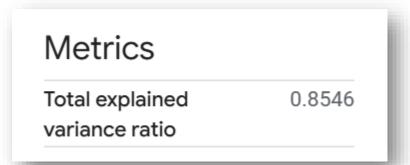
Data cleaning & standardize

Can be done with:

- Built-in BigQuery ML or Scikit-learn options
- Z-score normalization
- Exclusion of outliers (99th or 95th percentile)
- Log1p approach

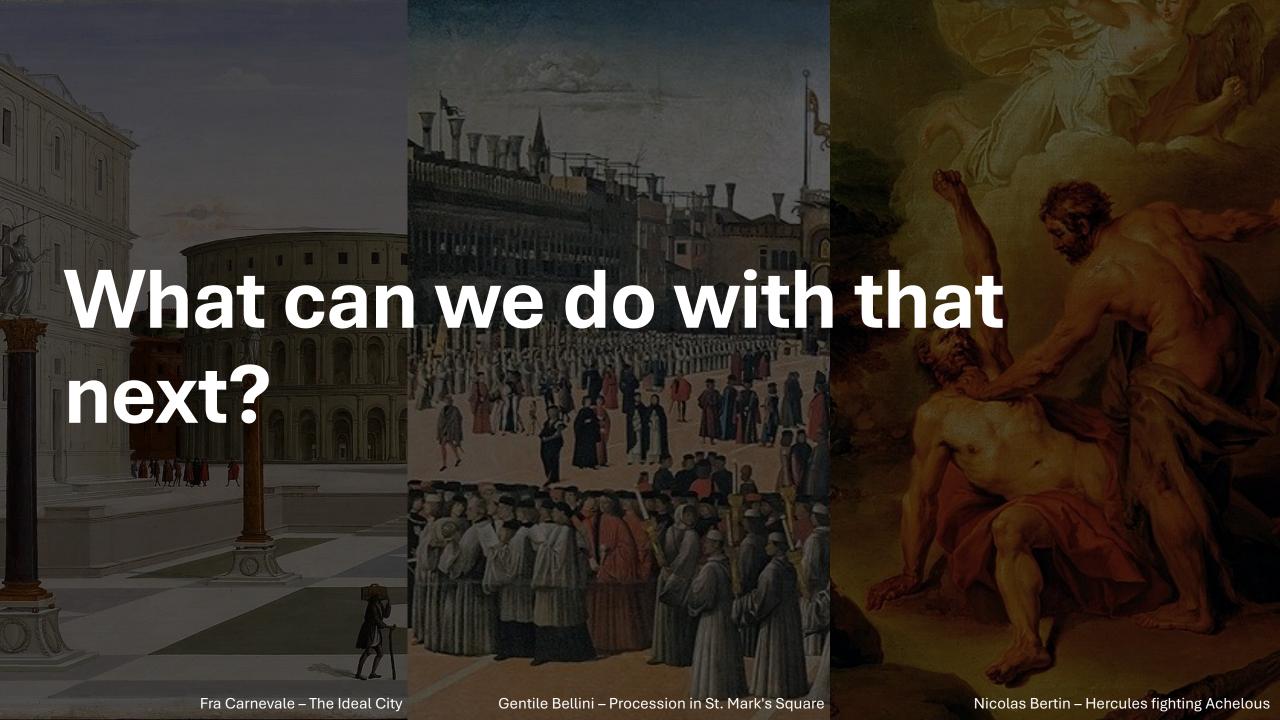
PCA Model Initialization

In BigQuery ML, we can either select number of components or define target explained variance


```
CREATE OR REPLACE MODEL `project.dataset.pca_user_behavior`
OPTIONS (
    model_type = 'pca',
    num_principal_components = 2
) AS
SELECT
    z_metrics1, z_metrics2, z_metrics3, z_metrics4, z_metrics5, z_metrics6
FROM `project.dataset.session_features_z`;
```

Checking results

Top things to check:


- Explained variance (bigger is better)
- Pivot between principal components and initial metrics

Limitation: In case our web product changes significantly over time, we need to re-train our PCA model

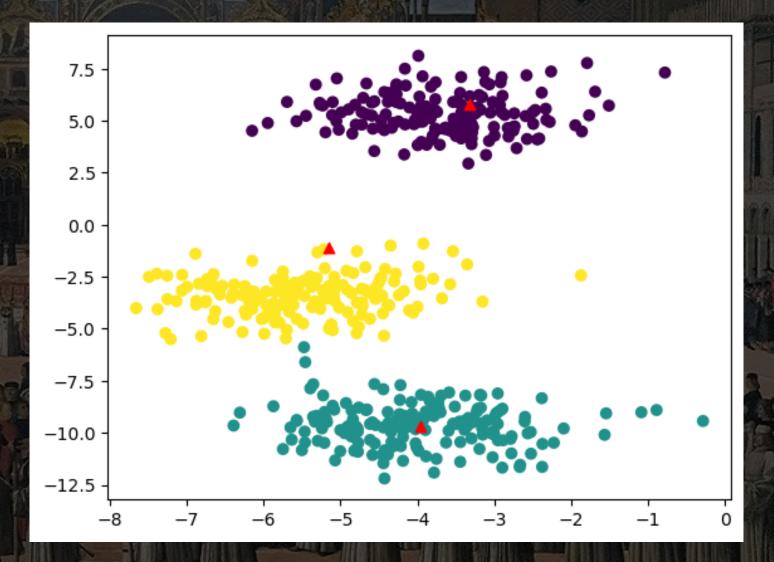
:	principal_compo //	eigenvalue ▼	explained_varian	cumulative_expla	
	0	3.465726082270	0.577621013711	0.577621013711	
	1	0.976709321654	0.162784886942	0.740405900654	

feature	pc1	pc2
z_metrics1	0.52	-0.07
z_metrics2	0.35	0.10
z_metrics3	0.49	-0.06
z_metrics4	0.49	-0.02
z_metrics5	0.13	0.96
z_metrics6	0.33	-0.25

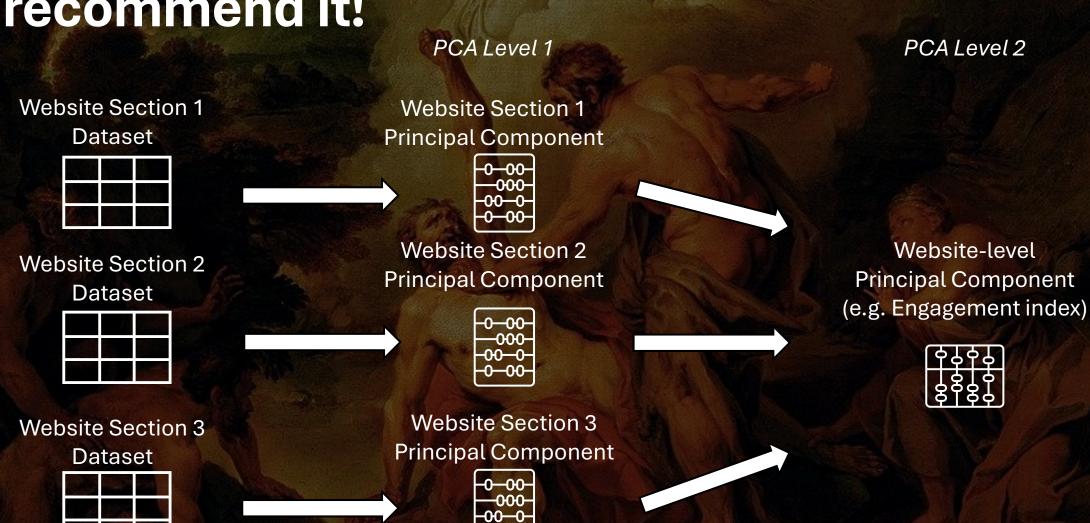
A path of wisdom

Source: https://dl.acm.org/doi/10.1145/3341981.3344222

Metrics patterns definition


Checking metrics numeric values + grouping them by principal components

	PC1	PC2	PC3	PC4	PC5	PC6
	(AbandQs)	(AbandCs)	(DeepSERP)	(Pace)	(NLQs)	(SlowCs)
QueriesWOBooks	0.87	0.09	0.27	0.04	0.06	-0.03
QueriesWOClicks	0.86	-0.03	0.21	0.21	-0.04	0.02
Queries	0.85	0.16	0.10	-0.29	0.15	0.04
RepeatedIntentQs	0.85	0.14	0.24	-0.02	0.02	0.12
QuickReforms	0.83	0.00	0.09	-0.18	-0.20	-0.05
UniqueQueries	0.82	0.15	0.09	-0.16	0.37	0.00
QueriesWOMouse	0.71	0.02	-0.08	0.15	-0.16	-0.09
UniqueQueryTerms	0.62	0.04	-0.05	0.04	0.36	0.30
QueriesWOScrolls	0.60	0.16	-0.44	-0.33	-0.03	-0.04
Clicks	0.16	0.83	0.22	-0.37	0.07	-0.18
ClicksWOBooks	0.18	0.79	0.25	0.13	0.02	-0.24
UniqueURLs	0.04	0.76	0.08	-0.05	0.12	0.09
CompletionTime	0.05	0.57	0.08	0.53	0.08	0.34
MouseWOClicks	0.34	0.18	0.85	-0.11	0.14	0.06
Mouseovers	0.16	0.40	0.82	-0.09	0.07	-0.02
Paginations	-0.09	0.18	0.78	0.01	-0.09	0.10
ScrollDistance	0.36	-0.06	0.77	-0.03	0.22	0.12
AvgTimeBWEvents	-0.26	-0.05	-0.07	0.83	-0.03	0.31
Bookmarks	-0.02	0.27	-0.07	-0.78	-0.01	0.09
TimeToFirstBook	0.06	0.19	-0.17	0.70	-0.12	0.22
QuestionQueries	0.02	0.08	0.13	0.01	0.83	-0.08
AvgQueryLength	0.01	0.10	0.03	-0.09	0.82	0.10
TimeToFirstClick	0.04	-0.02	0.02	0.12	0.06	0.82
Avg1stClickTime	0.05	-0.13	0.34	0.30	-0.04	0.70


A path of might

Segmentation based on principal components

Saving of principal component values in a separate table + application of k-means clustering

A path of courage – I totally would not recommend it!

Why is it good to try PCA?

- It is another good entry point to start working with applied statistics!
- It can help to uncover additional patterns to user engagement understanding
- Findings of PCA then can be used in terms of propensity modelling
- We need to do something barbaric before transition to Ancient Greeks of Digital Analysis

Let's connect!

- GitHub with scripts: <u>https://github.com/Lunthu/ga4_pca</u>
- Linkedin: https://www.linkedin.com/in/victor-laputsky-44199bab/

